Some Research on Functional Data Analysis
نویسنده
چکیده
In order to model the functional time series system, we developed a new model–Gaussian process hidden Markov model. We use the hidden Markov model to characterize the time order of system, and Gaussian process to model the function observations. We utilized this new model to consider the functional time series classification and prediction problem. The simulation results for real data demonstrate that our model is efficient.
منابع مشابه
Providing comprehensive control chart for monitoring of linear and nonlinear profiles using functional data analysis.
Considering profiles as functional variables, two control charts are proposed for their monitoring in phase II. Due to its conformity with the nature of real-world profiles, applying functional model leads to proposed control charts obtained through functional data analysis techniques with desired features. These include simplicity in calculation and possibility of using them for different prof...
متن کاملFunctional Modeling of Iranian Precipitation Based on Temperature and Humidity
Functional Data Analysis (FDA) has recently made considerable progress because of easier access to the data that are essentially in the form of curves. Modeling of Iranian precipitation based on temperature and humidity with continuous the essential nature of such phenomena that are continuous functions of time has not been done properly. The corresponding data are generally collected daily or ...
متن کاملGeneralization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems
In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...
متن کاملEstimation of Climate Zone Effects on Iranian Temperature, Humidity, and Precipitation using Functional Analysis of Covariance
Functional Data Analysis (FDA) has recently made considerable progress because of easier access to the data that are essentially in the form of curves. Although functional modeling of Iranian precipitation based on temperature or humidity was done before, here we use functional analysis of variance and covariance to analyze the weather data collected randomly from Iranian weather stations in 20...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کامل